This is a cache of https://www.uibk.ac.at/fakultaeten/biologie/alpine-forschungsstaetten/patscherkofel.html.de. It is a snapshot of the page at 2024-11-22T18:37:10.263+0100.
Patscherkofel – Universität Innsbruck

 

Alpengartenhaus Patscherkofel

Der Alpengarten der Universität Innsbruck liegt auf einer Höhe von 1.890 bis 1.950 m im Waldgrenzbereich knapp unterhalb des Patscherkofelhauses und in unmittelbarer Nähe zur Bergstation der Patscherkofelbahn. Der Garten erstreckt sich über eine Fläche von circa 2 Hektar die großteils frei zugänglich sind und ein beliebtes Ziel für Besucherinnen und Besucher des Patscherkofels darstellen. Das 1997 errichtete Alpengartenhaus wird durch das Institut für Botanik für Lehre und verschiedenste Forschungsaufgaben genutzt, es ist außerdem die Basis für die Betreuung des Alpengartens durch die Gärtnerinnen und Gärtner des Botanischen Gartens der Universität Innsbruck. Das haus verfügt über zwei Laborräume, Küche, Schlafräume und Sanitäranlagen sowie Stauraum für Geräte und einen Pumpraum für die hauseigene Quelle. Ein Teil des eingezäunten Grundstücks ist nicht öffentlich zugänglich und daher für Experimente sehr gut geeignet.

Am Patscherkofel werden unter anderem Anpassungsmechanismen und Überlebensstrategien alpiner Pflanzen – vor allem Nadelhölzer – auf extreme Umweltbedingungen wie Kälte und Trockenheit erforscht.

Weiterführende Links

Aktuelle Forschungsprojekte

Aktuelle Publikationen

  • Oberhuber, W., Gruber, A. & Wieser, G. (2023): Seasonal and daily xylem radius variations in Scots pine are closely linked to enviromental factors affecting transpiration. Biology 12, 9: 1251. https://doi.org/10.3390/biology12091251 
  • Neuner, G. & Buchner, O. (2023): The dose makes the poison: The longer the heat lasts, the lower the temperature for functional impairment and damage. Environmental and Experimental Botany 212: 105395, https://doi.org/10.1016/j.envexpbot.2023.105395
  • Ninomiya, H. et al. (2023): Modeling of non-structural carbohydrate dynamics by the spatially explicit individual-based dynamic global vegetation model SEIB-DGVM (SEIB-DGVM-NSC version 1.0). Geosci. Model Dev., 16, 4155–4170, https://doi.org/10.5194/gmd-16-4155-2023
  • ROACH, T., NEUNER, G., KRANNER, I. & BUCHNER, O. (2023): Heat Acclimation under Drought Stress Induces Antioxidant Enzyme Activity in the Alpine Plant Primula minima. Antioxidants, 12(5): 1093, https://doi.org/10.3390/antiox12051093 
  • OBERHUBER, W., DOBLER, A.-L., HEINZE, T. et al. (2023): Climate Overrides the Influence of Microsite Conditions on Radial Growth of the Tall Multi-Stemmed Shrub Alnus alnobetula at Treeline. Plants 12: 1708, https://doi.org/10.3390/plants12081708 
  • OBERHUBER, W., SALINO, E., OBEXER, L., WIESER, G. & GRUBER, A. (2023): Is growth of Swiss stone pine at the alpine treeline impaired or enhanced by competition with N2-fixing green alder? EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-2212, https://doi.org/10.5194/egusphere-egu23-2212 
  • STEGNER, M., BUCHNER, O., GESSLBAUER, M. et al. (2023): Frozen mountain pine needles: The endodermis discriminates between the ice-containing central tissue and the ice-free fully functional mesophyll. Physiologia Plantarum, 175( 1), e13865, https://doi.org/10.1111/ppl.13865
  • BERTEL, C., KAPLENIG, D., RALSER, M. et al. (2022): Parallel Differentiation and Plastic Adjustment of Leaf Anatomy in Alpine Arabidopsis arenosa Ecotypes. Plants, 11, 2626. https://doi.org/10.3390/plants11192626 
  • GANTHALER A., BÄR A., DÄMON B., LOSSO A., NARDINI A., DULLIN C., TROMBA G., VON ARX G. & MAYR S. (2022): Alpine dwarf shrubs show high proportions of non-functional xylem: Visualization and quantification of species-specific patterns. Plant, Cell & Environment 45: 55–68, DOI: 10.1111/pce.14226
  • GRUBER, A., OBERHUBER, W. & WIESER, G. (2022): Treeline-Quo Vadis? An Ecophysiological Approach. Forests 2022, 13, 857, https://doi.org/10.3390/f13060857 
  • KAPLENIG, D., BERTEL, C., ARC, E. et al. (2022): Repeated colonization of alpine habitats by Arabidopsis arenosa viewed through freezing resistance and ice management strategies. Plant Biol J, 24: 939-949. https://doi.org/10.1111/plb.13454
  • OERHUBER, W.; WIESER, G.; BERNICH, F.; GRUBER, A. (2022): Radial Stem Growth of the Clonal Shrub Alnus alnobetula at Treeline Is Constrained by Summer Temperature and Winter Desiccation and Differs in Carbon Allocation Strategy Compared to Co-Occurring Pinus cembra. Forests 13, 440, https://doi.org/10.3390/f13030440
  • PRAMSOHLER, M., LICHTENBERGER, E. & NEUNER, G (2022): Seasonal Xylem Sap Acidification Is Governed by Tree Phenology, Temperature and Elevation of Growing Site. Plants, 11, 2058. https://doi.org/10.3390/plants11152058 
  • SALOMÓN, R.L., PETERS, R.L., ZWEIFEL, R. et al. (2022): The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nature Communications 13, 28; https://doi.org/10.1038/s41467-021-27579-9
  • STEGNER, M., FLÖRL, A., LINDNER, J. et al. (2022): Freeze dehydration vs. supercooling of mesophyll cells: Impact of cell wall, cellular and tissue traits on the extent of water displacement. Physiologia Plantarum, 174( 6), e13793, https://doi.org/10.1111/ppl.13793
  • TELAGATHOTI, A., PROBST, M., MANDOLINI, E. & PEINTNER, U. (2022): Mortierellaceae from subalpine and alpine habitats: new species of Entomortierella, Linnemannia, Mortierella, Podila and Tyroliella gen. nov. Studies in Mycology 103: 25–58, https://doi.org/10.3114/sim.2022.103.02
  • GANTHALER A. & MAYR S. (2021): Subalpine dwarf shrubs differ in vulnerability to xylem cavitation: an innovative staining approach enables new insights. Physiologia Plantarum, https://doi.org/10.1111/ppl.13429 
  • LOSSO, A., BÄR, A., UNTERHOLZNER, L., BAHN, M. & MAYR, S. (2021): Branch water uptake and redistribution in two conifers at the alpine treeline. Scientific Reports 11: 22560, https://doi.org/10.1038/s41598-021-00436-x
  • PESKOLLER A., SILBERNAGL L., HÜLBER K., SONNLEITNER M. & SCHÖNSWETTER P. (2021): Do pentaploid hybrids mediate gene flow between tetraploid Senecio disjunctus and hexaploid S. carniolicus s. str. (S. carniolicus aggregate, Asteraceae)? Alpine Botany, https://doi.org/10.1007/s00035-021-00254-x
  • POYATOS R., GRANDA V., […], OBERHUBER W., et al (2021): Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth Syst. Sci. Data 13: 2607–2649, https://doi.org/10.5194/essd-13-2607-2021
  • TELAGATHOTI A., PROBST M., KHOMENKO I., BIASIOLI F. & PEINTNER U. (2021): High-Throughput Volatilome Fingerprint Using PTR–ToF–MS Shows Species-Specific Patterns in Mortierella and Closely Related Genera. J. Fungi 7:66, https://doi.org/10.3390/jof7010066
  • TELAGATHOTI A., PROBST M. & PEINTNER U. (2021): Habitat, snow-cover and soil pH, affect the distribution and diversity of Mortierellaceae species and their associations to bacteria. Frontiers in Microbiology 12, https://doi.org/10.3389/fmicb.2021.669784
  • WAGNER J., GRUBER K., LADINIG U., BUCHNER O. & NEUNER G. (2021): Winter Frosts Reduce Flower Bud Survival in High-Mountain Plants. Plants 10, 1507, https://doi.org/10.3390/plants10081507
  • BUCHNER O., STEINER P., ANDOSCH A.; HOLZINGER A., STEGER M., NEUNER G & LÜTZ-MEINDL, U. (2020): A new technical approach for preparing frozen biological samples for electron microscopy. Plant Methods 16/1, No. 48
  • HUANG J.-G., QIANQIAN M., ROSSI S., BIONDI F., DESLAURIERS A., FONTI P., LIANG E., MÄKINEN H., OBERHUBER W. & GRUBER A. et al (2020): Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences 117/34: 20645–20652, (SCIE-IF 2019: 9,412)
  • NEUNER G., HUBER B., PLANGGER A., POHLIN J.-M. & WALDE J. (2020): Low temperatures at higher elevations require plants to exhibit increased freezing resistance throughout the summer months. Environmental and Experimental Botany 169, No. 103882, https://doi.org/10.1016/j.envexpbot.2019.103882
  • OBERHUBER W., BENDLER U., GAMPER V., GEIER J., HÖLZL A., KOFLER W., KRISMER H., WALDBOTH B. & WIESER G. (2020): Growth trends of coniferous species along altitudinal transects in the Central European Alps indicate decreasing sensitivity to climate warming. Forests 11:2, No. 132, https://doi.org/10.3390/f11020132
  • STEGNER M., LACKNER B., SCHÄFERNOLTE T., BUCHNER O., XIAO N., GIERLINGER N., HOLZINGER A. & NEUNER G. (2020): Winter nights during summer time: stress physiological response to ice and facilitation of freezing cytorrhysis by elastic cell wall components in leaves of a nival species. International Journal Of Molecular Sciences 21(19) 7042. https://doi.org/10.3390/ijms21197042
  • STEGNER M., WAGNER J., & NEUNER G. (2020): Ice accommodation in plant tissues pinpointed by cryo-microscopy in reflected-polarised-light. Plant Methods 16(1), 73

Weiter Publikationen finden Sie im Literaturverzeichnis.

Nach oben scrollen