This is a cache of https://www.uibk.ac.at/de/newsroom/2023/dunkelheit-macht-makro-quanteneffekte-sichtbar/. It is a snapshot of the page at 2024-11-27T16:10:14.357+0100.
Dunkelheit macht Makro-Quanteneffekte sichtbar – Universität Innsbruck
Glaskugel rollte über eine gebogene Fläche

Ein Glaskügelchen, das einem durch elektrostatische oder magnetische Kräfte erzeugten Potenzial folgt, nimmt einen makroskopischen Überlagerungszustand an.

Dun­kel­heit macht Makro-Quan­ten­ef­fekte sicht­bar

Schnell sein, Licht vermeiden und über eine kurvenreiche Rampe rollen: Das ist das Rezept für ein bahnbrechendes Experiment, das Innsbrucker Physiker in einem kürzlich in Physical Review Letters veröffentlichten Artikel vorschlagen. Damit soll ein Nanoteilchen, das sich in einem durch elektrostatische oder magnetische Kräfte erzeugten Potenzial bewegt, rasch und zuverlässig in einen makroskopischen Überlagerungszustand gebracht werden.

Die Grenze zwischen der Alltagswelt und der Quantenwelt ist noch immer unklar. Wird ein Teilchen durch Abkühlung auf den absoluten Nullpunkt zu einem Quantenobjekt, ist es umso stärker lokalisiert, je massiver es ist. Forscher unter der Leitung von Oriol Romero-Isart vom Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften (ÖAW) und dem Institut für Theoretische Physik der Universität Innsbruck schlagen ein Experiment vor, bei dem sich ein mit Laserlicht im Schweben gehaltenes Nanoteilchen, das auf seinen Grundzustand abgekühlt ist, einem nicht-optischen („dunklen“) Potenzial ausgesetzt wird, das durch elektrostatische oder magnetische Kräfte erzeugt wird. Die Forscher erwarten, dass dieses dunkle Potential rasch und zuverlässig einen makroskopischen Quantenüberlagerungszustand erzeugen wird.

Die Bewegung eines winzigen Glaskügelchen kann mittels Laserlicht auf seinen Grundzustand abgekühlt werden. Allein gelassen, von Luftmolekülen und einfallendem Licht bombardiert, heizen sich solche Glasperlen rasch auf und verlassen das Quantenregime, was jede Quantenkontrolle stark beschränkt. Um dies zu vermeiden, schlagen die Forscher um Oriol Romero-Isart vor, das Glaskügelchen im Dunkeln, bei ausgeschaltetem Licht, mit einem durch ungleichmäßige elektrostatische oder magnetische Kräfte gesteuerten Potential zu kontrollieren. Diese Methode ist nicht nur schnell genug, um eine Erwärmung durch streunende Gasmoleküle zu verhindern, sondern hebt auch die extreme Lokalisierung auf und sollte die Quanteneigenschaften eindeutig sichtbar machen.

In dem kürzlich in Physical Review Letters erschienenen Artikel wird auch diskutiert, wie dieser Vorschlag die praktischen Herausforderungen dieser Art von Experimenten umgeht. Zu diesen Herausforderungen gehören die Notwendigkeit schneller Versuchsdurchläufe, der minimale Einsatz von Laserlicht zur Vermeidung von Dekohärenz und die Möglichkeit, Versuchsdurchläufe mit demselben Teilchen rasch zu wiederholen. Diese Überlegungen sind entscheidend, um die Auswirkungen von niederfrequentem Rauschen und anderen systematischen Fehlern abzuschwächen.

Dieser Vorschlag wurde ausführlich mit den experimentellen Partnern von Q-Xtreme, einem von der Europäischen Union finanzierten ERC-Synergy-Grant-Projekt, diskutiert. „Die vorgeschlagene Methode orientiert sich an den aktuellen Entwicklungen in ihren Labors und sie sollten bald in der Lage sein, unser Protokoll mit ungekühlten Teilchen im klassischen Bereich zu testen, was sehr nützlich sein wird, um Rauschquellen zu messen und zu minimieren, wenn die Laser ausgeschaltet sind“, sagt das Theorie-Team um Oriol Romero-Isart. „Dieses Quantenexperiment stellt zwar eine sehr große Herausforderung dar. Wir glauben aber, dass es machbar sein sollte, da unser Vorschlag alle notwendigen Kriterien für die Erzeugung dieser makroskopischen Quantenüberlagerungszustände erfüllt.“

Publikation: Macroscopic Quantum Superpositions via Dynamics in a Wide Double-Well Potential. M. Roda-Llordes, A. Riera-Campeny, D. Candoli, P. T. Grochowski, and O. Romero-Isart. Phys. Rev. Lett. 132, 023601 DOI: 10.1103/PhysRevLett.132.023601 [arXiv: 2303.07959]

    Nach oben scrollen