This is a cache of https://www.uibk.ac.at/en/newsroom/2023/blast-chiller-for-the-quantum-world/. It is a snapshot of the page at 2024-11-26T15:51:39.281+0100.
Blast Chiller for the Quantum World – Universität Innsbruck
Chip mit dem mikromechanischen Oszillator ist auf dem Siliziumsubstrat, Nahaufnahme eines SQUID

Superconducting circuit (white) on a silicon substrate fixed in a copper holder. The chip (silver) with the micromechanical oscillator is attached to the silicon substrate.

Blast Chiller for the Quan­tum World

The quantum nature of objects visible to the naked eye is currently a much-discussed research question. A team led by Innsbruck physicist Gerhard Kirchmair has now demonstrated a new method in the laboratory that could make the quantum properties of macroscopic objects more accessible than before. With the method, the researchers were able to increase the efficiency of an established cooling method by an order of a magnitude.

With optomechanical experiments, scientists are trying to explore the limits of the quantum world and to create a foundation for the development of highly sensitive quantum sensors. In these experiments, objects visible to the naked eye are coupled to superconducting circuits via electromagnetic fields. To get functioning superconductors, such experiments take place in cryostats at a temperature of about 100 millikelvin. But this is still far from sufficient to really dive into the quantum world. In order to observe quantum effects on macroscopic objects, they must be cooled to nearly absolute zero using sophisticated cooling methods. Physicists led by Gerhard Kirchmair from the Department of Experimental Physics at the University of Innsbruck and the Institute of Quantum Optics and Quantum Information (IQOQI) have now demonstrated a nonlinear cooling mechanism with which even massive objects can be cooled well.

Cooling capacity higher than common

In the current paper, the Innsbruck researchers couple the mechanical object - in their case a vibrating beam - to the superconducting circuit via a magnetic field. To do this, they attached a magnet to the beam, which is about 100 micrometers long. When the magnet moves, it changes the magnetic flux through the circuit, the heart of which is a so-called SQUID, a superconducting quantum interference device. Its resonant frequency changes depending on the magnetic flux, which is measured using microwave signals. In this way, the micromechanical oscillator can be cooled to near the quantum mechanical ground state. Furthermore, David Zöpfl from Gerhard Kirchmair's team explains, "The change in the resonant frequency of the SQUID circuit as a function of microwave power is not linear. As a consequence, we can cool the massive object by an order of magnitude more for the same power." This new, simple method is particularly interesting for cooling more massive mechanical objects. Zöpfl and Kirchmair are confident that this could be the foundation for the search of quantum properties in larger macroscopic objects.

The work was carried out in collaboration with scientists in Canada and Germany and has now been published in Physical Review Letters. The research was financially supported by the Austrian Science Fund FWF and the European Union, among others. Co-authors Christian Schneider and Lukas Deeg are or were members of the FWF Doctoral Program Atoms, Light and Molecules (DK-ALM).

    Nach oben scrollen